
,--,i -- - -- . - -. --A ,- . , ',. . ,,, , - ,-_ , , j z,. , . , N .N .. N,'.vv1... .

4

Productivity Engineering in the UNIXt Environment

I) Augmenting Expensive Functions in Macsyma with Lookup Tables

Technical Report

S. L. Graham
Principal Investigator

(415) 642-2059

"The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the U.S. Government."

Contract No. N00039-84-C-0089

August 7, 1984-August 6, 1987 D T lC
ELECTE D 9

Arpa Order No. 4871 JUL 2 21 988

* a

p tUNIX is a trademark of AT&T Bell Laboratories

DrzMW1- m,-'N =TL:NT Ak

II r) iC 11#
' '. mited

SECURiTY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

unlimited
2b. DECLASSIFICATION / DOWNGRADING

SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATIONThe Regents of the University (if applicable)

of California SPAWAR

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Berkeley, California 94720 Space and Naval Warfare Systems CommandWashington, DC 20363-5100

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
DARPA

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT
Arlington, VA 22209 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

AUGMENTING EXPENSIVE FUNCTIONS IN MACSYMA WITH LOOKUP TABLES

12. PERSONAL AUTHOR(S)

* Carl G. Ponder, Richard J. Fateman
13a. TYPE OF REPORT 13b. TIME COVERED 114. r) REPORT (Year, Month, Day) 5. PAGE COUNT
technical FROM TO. August 27, 1987 * 18

16 SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if neccssary and identify by block number)
FIELD GROUP SUB-GROUP

'9 ABSTRACT (Continue on reverse if necessary and identify by block number)

Enclosed in paper.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
CUNCLASSIFIEDIUNLIMITE D 0 SAME AS RPT. 0 DTIC USERS unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

OD FORM 1473. 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE I".

All other editions are obsolete.

%•%
-. "" .

Augmenting Expensive Functions in
Macsyma with Lookup Tables

Carl G. Ponder
Richard J. Fateman

Computer Science Division
University of California

Berkeley, Ca. 94720

August 27, 1987

-Abstract P
Tabulating the correspon~ling inputs and outputs to a computer func-

tion reduce recomputation to a simple table lookup. This idea has been
used by the\symbolic algebra systems Maple and SMP, but to a much
lesser degree',n Macsyma. ",#* report on some experiments which test
this idea for certain critical functions in Macsyma. Although the idea
holds some promise, some alleged performance improvements may merely
represent redistribution of accounting costs. In many cases performance
was degraded. "*e-explain'whv. /o ,, •

1 Introduction

One way to improve program performance is to associate a lookup table with •
a computer function f, to hold pairs <x4f(x)> of inputs and outputs to the
function. If the same input is given to the function again, the output is found
by searching in the lookup table and returning the precomputed result. This
requires that f always computes the same output for a given input and that :f .N
has no side-effects.

Maintaining such a table adds an overhead to all computations of f. A
lookup must be performed prior to actually computing f, and if no entry is "
found one must be made afterward. The table must also occupy some space.
The only benefits to performance occur when inputs are repeated. The tradeoff
of eliminated computation and table overhead will determine if a net speedup
is accomplished.

The tabular approach, sometimes called "memo-ization" is discussed by
Bentley [2) and Abelson/Sussman [1], and has been used by the Maple [4] and

I k

der,".

%S

SMP [6] systems. Although the methodology has been described and is widely
believed to save time, no published evaluations of this feature have appeared.
While in isolated examples the benefit is easy to demonstrate, it is also easy to
demonstrate cases where it is wasteful of time and space.

In Maple, all system functions callable from the top level are tabulated. In
addition, an option Remember is provided for user-defined functions. Specifying
this option attaches a lookup table to the specified function. Maple 4.0 provides
various options for table management, such as whether or not to empty the table
upon garbage-collection.

In this paper we will examine the issues of using such a feature in Macsyma
and algebraic manipulation systems in general. For sufficiently contrived test
cases, the results are positive. For most cases a slight slowdown occurs. In
sections 2 and 3 we analyze the requirements of memo functions. In section 4
we describe special issues of interest in Macsyma. In section 5 we describe some
experiments.

2 Overview

The two critical parameters affecting the usefulness of the tabulation feature
are the frequency of occurrence of repeated inputs to tabulated functions, and
the overhead of maintaining the tables.

2.1 Re-Use Frequencies

The first of these parameters is obviously dependent on the nature of the test
cases and the ability of the system to map new requests into previously solved
cases. Care in the choice of representation and algorithms contribute to this.

The general view of the tabulated version of a function f is to replace the
form (using Scheme syntax [1]):

(define f (lambda(x) <computation>))

with O

YS 5Prc[to

(define I (make-tabular (lambda(x)<computation>)))

;; We have omitted hashtable functions:

;; make-table, lookup, and insert! Acc .i. For

NTIT-A
(define (make-tatk.ar f) D71C -A ,

make-tabular takes one argument: U.. o>&

'v ...D~~ ~ ~~ "o-t '. i

;; a function f, of one argument
;; returns a new function which is a tabular form of f

(lot (Ctable (make-table))) ;; set up an empty hashtable

;; this table will be local to f
(lambda(x) ;; this is the body of the new function

(let ((previously-computed-pair (lookup x table)))
(cond ((null? previously-computed-pair)

; call original if needed

(let ((result (f x))) ;; compute result

(insert! x result table) ;; insert value

in table
result)) ;; return result

(else

(get-value-from-pair
previously-computed-pair)))))))

As the function is called on different inputs, the lookup table will grow. This
tends to slow down subsequent lookups. Well-managed hash tables keep this
cost from growing too fast; alternative search structures such as trees do not
seem to have any particular advantage here.

Strategies may be used to trim the size of the lookup table, both for storage
economy and speed. For example

" The Maple system can partially or totally empty each table whenever a
garbage collection of its heap space is performed.

" Some sort of "locality" based scheme might be employed, such as recording
the time of last reference or frequency of reference to each entry, and
deleting the ones that do not get as much use.

" Discrimination based on the size of the input or the time required to
process it might be plausible. That is, we don't enter inexpensive cases in
the table at all.

How well these ideas work depends on patterns of system behavior. An ideal
oracle might insert into the table only those entries which will be re-utilized,
and would delete the entry after last use. Other techniques must suffice: For
example, the Maple system will not tabulate "sin(O.O1)" but it will tabulate
"sin(pi)" for the sine function; a real number parameter suggests that it will be
recomputed less often than a symbolic constant

Strategies for deletion of entries will not be explored any further in this
paper. We will also not address the long-term storage of tables except to observe
that some computations that may be continued over the course of several "runs"
of a program. In such cases, preserving the tables between runs - as part of
the saved "image" of a program, or explicitly in some persistent data base,

3.,

3.'

'ft

" "p

could be worthwhile. Similarly, several processors simultaneously (and perhaps

at distributed locations) solving the same suite of problems in a coordinated
fashion should probably be able to share valuable tabulated information.

The test cases used will strongly affect the performance of the tabulation
scheme. For example, taking successive derivatives of

log(log(log(log(log(z)))))

(the Logs benchmark) causes a large number of common subexpressions to be

generated and re-differentiated. Taking successive terms of the sequence

o00) = 1, oh(x) = 1 + o2h-l(t)dt h > 0

involves far less recomputation.

An early experiment of finding the reduced Gr5bner basis [3] of a set of

multivariate polynomials has even less apparent redundant computation. One
could argue that we have failed to tabulate the appropriate functions for the

Gr6bner calculation, but in our view it is likely that it is typical of a large class of
computation-intensive largely non-redundant calculations that can be specified

in Macsyma. Tabulation just won't help. We have dropped this benchmark
from our data, but it should be kept in mind that there is a large body of code
for which tabulation cannot provide any benefit.

2.2 Lookup Table Efficiency

Clearly an expensive lookup and insertion mechanism would tend to defeat any
success of tabulated functions. We use a relatively fast hash-coding scheme,
but we must compute hash codes of rather large expressions (mapping "equal" ,

Lisp S-expressions to the same hash number). Since it is feasible to claim that .

our hashing mechanism could be made faster, the performance projections in %
section 5.3 provide upper bounds on performance which are independent of the %

form of the lookup table mechanism. We can predict performance with zero-time
hashing and lookup.

3 Data Representation and Matching

The number of recomputations detected in a run of a program may be sensitive

to the data representations and algorithms used. For example, consider factoring

two polynomials identical up to renaming of indeterminates. The results of

factoring will likewise be identical up to the renaming. Using literal equivalence

4

to search in the lookup table will not identify such matches. One possibility is
to somehow canonicalize the internal form of expressions so they are immune to
change of variable names. The possibilities for finding matches are open-ended:
it would be feasible for transformations to help matching be arbitrarily costly.
On the other hand, we should not tolerate any lookup more expensive than
computing f itself.

We will take some pains to observe a relevant upper bound to global improve-
ment by tabulation. If we chose to tabulate a function f, we should predict the
percentage of time consumed by 1; if 1 takes only 5% of the time, even if f
could be computed free we would get only 5% speedup. Thus profiling [9] is
important in the global evaluation of this technique.

The nature of the table generated for a given function will depend on the
algorithms used as we)) as the particular test cases. For example, an integration
algorithm that calls itself repeatedly on sub-parts of a problem may build up a
table rapidly. Whether the stored data will be reused or not may also depend
on the algorithm. For example, one which generates new Lisp "gensym" vari-
ables for each subproblem may never have any duplicates in its table. Some
integration programs make extensive use of (perhaps repetitive) differentiation,
which builds up a table associated with that function, and so might benefit.

Some algorithms (like cofactor expansion in determinant calculations) may
actually be better suited to dynamic-programming solutions. Although subcom-
putations are still performed, the dynamic programming tableau is accessed in a
very specific manner using direct addressing, rather than the haphazard search
used by the lookup table. It is significant if one can systematically discard infor-
mation that is no longer needed, since running out of memory space is normally
one contributor to failures of symbolic computations.

The Maple report [] uses a Fibonacci-number-returning function as an ex-
ample of using the remember option. Of course the storage and computation
of Fibonacci numbers is not a serious problem. Although one can dismiss it
as a contrived case, it is conceivable that more complex computations might
implicitly follow a similar, but more subtle pattern. The Maple report goes on
to state that (page 8)

... Although the effect is not as spectacular for most functions, it
is not unusual for typical programs to be made roughly 30% faster
by the judicious use of option remember.

Maple has not been tested without hashing [8]. The feeling of the Waterloo
group is that it adds a small overhead to computation while producing a large
improvement for certain cases. If option remember succeeds only because the
functions are well-adapted to dynamic programming, then this only reflects the
speedup that can be obtained by re-thinking the algorithm and not re-computing
already known partial results. It does, however, save in three respects:

9 The programmer is saved the linguistic effort needed to reorganize a com-
putation to tabulate appropriate expressions as they are computed.

5

ON

.,

-S

e The programmer can, without much effort, take advantage of recognized
redundancy and "advise" programs - without delving into the interior of
their algorithms - to save previously computed results.

* If the dynamic programming tableau would be mostly empty, the hash
table would be a more space-efficient form.

4 Issues in Macsyma

The Macsyma system does not currently use any general tabulation feature for
system programs. There is a specific table for factorization that is enabled by
setting the savefactors variable to true, which serves as a "memo" feature
for the factor command. Tabulation can be used for user-defined functions by
using index or array functions. Using the form ixJ := ... rather than f(x)
... causes the function f to be defined as an array; the elements of the array
are computed only on demand and are saved explicitly in the array after they
are first computed. Thus only the "necessary" elements of the array are ever
entered, and they are only computed once apiece. This corresponds very closely
to the properties of the remember option. The SMP projection construction
is similar, but uses a more elaborate pattern match to determine whether a
computation or special case applies. 16]

Few Macsyma system programs of any complexity are true functions which
compute their values based solely on their input arguments. There are several
hundred global flags controlling such issues as whether to attempt numerical
evaluation or how to simplify expressions. The settings of variables of all sorts
can also affect results. To properly handle flags, the tables must be sensitive to
which flag settings are relevant. Three possibilities emerge:

1. Include flags with each table entry and also use them to compute hash
codes; S

2. Switch to a different table each time a flag is modified or a variable's value
is changed.

3. Clear out the tables when a relevant flag is changed. ,,,

It is possible to consider writing the program for the function f so that when
the computation is actually done, we would have a record of each flag and its I
setting, as the flag was tested. This could then be used to implement the first
of the above three ideas.

The second and third possibilities are similar; what we in fact have imple-
mented is version (3), except that since we never change flags in our experiments,
we need never clear any tables.

Further complications occur when the tabulated function also produces side .
effects such as setting global variables or performing input or output. Clearly

6.x

o

- ' :-' ' "-*-',',',_" "'. "'-" ' """ " , . . . # "" " " - "." - " "- . . "- ", -- - - -- -- . - -. "'"

WWWLl yW)rXXX VrIN 75 .WML-I W.1 ILIC WYKA 27.YK TTA 57~b. %LAVWM"J RF W.. v. .- ' - - 7N- ~..

"remembering" the result of the last read is not an adequate substitute for
executing another read.

5 Experiments

Several experiments were run using hash tables to tabulate the main functions
in the simplifier and differentiator in Macsyma. V

Comparing this modified Macsyma to SMP and Maple can be confusing.
The algorithms and representations used inside Maple benefit from an early
commitment to storing unique versions of expressions. This reduces testing for
structural equivalence to a test for pointer equality. The penalty that Maple
pays is that creating new expressions is more elaborate than in Macsyma; Maple
must see if the expression or part of it already exists. Adding such hash tables
to Macsyma would require extensive restructuring. We hope to explain how our "
evidence supports the conclusion that hashing may not be so good as an add-on
feature.

In this section we .vill discuss the rationale, the benchmarks, and the signif-
icance of our measurements.

The performance of Vax Macsyma ("Vaxima") was measured, running under
Franz Lisp Opus 42 on a Vax 8600. The Franz Lisp built-in hash tables were used
to tabulate two system functions. Structural equivalence was used to test for
identical expressions. The tables were used to tabulate the simplifier aimplitya
t5] the symbolic differentiation program sdiff. These were chosen because they 3
were intuitively likely candidates, even though they both examine global flags. .5

(The Maple system tabulates the evaluator and Taylor-serics expander as well.
The Taylor-series expander went virtually unused in our benchmarks, and side-
effects in the evaluator caused the tabulated version to return incorrect results.
Thus we did not use tabulated versions of meval and Staylor in our tests.)
Another experiment was done with the Macsyma great function, which is used
to compare, lexically, internal expressions. A major portion of the time in
simplifya in Macsyma is used to group and rearrange expressions in sums and
products. Unfortunately., the great function is called so many times on trivial
comparisons that tabulating it is not worthwhile. Cutting the computation at
the higher level seems more productive.

In the long run we found nominal speedups for three rather specific test
cases and slowdowns for all the rest. The sped-up benchmarks were a priori
thought to be good candidates; they each involved recursive operations that
kept regenerating common subexpressions. Since we could not rule out the
possibility that the slowdowns on the other benchmarks were due to a poor
implementation of hashing, we extended our measurements to get concrete upper
bounds on possible performance improvement.

7

5.1 Instrumentation

We tried to identify the maximum speed-up available by measuring the total
time used by each procedure in the benchmark computations. By subtracting
the time spent in simplitya and sdiff we could see the net reduction in time
possible if the time spent in the two procedures could be reduced to zero (by
miraculous speedup). These measurements were obtained as follows: Each pro-
cedure has a clock. The difference between entry and exit times for top-level
calls was added to the clock. A counter was used to determine whether or not
invocations of a procedure were top-level or not, by incrementing the counter
on call and decrementing it on return. The time spent by non-top-level calls

was charged to the procedure implicitly since the clock keeps running as long
as the top-level call is active. The presence of the timing macros added a small
overhead to the execution. The monitoring overhead amounted to roughly one
procedure cali/return, one add, one subtract, one compare, and a few stores
per invocation of the procedure. The total instrumentation overhead was be-
tween 2.6% and 15.6% of the execution time excluding garbage-collection; much
of this was not charged to the calls since the majority of the instrumentation
computation occurred before and after the top-level calls.

Second, the "redundant time" spent in each procedure was measured. This
was the cumulative time spent processing inputs that had already been pro- ,,
cessed. This was done by running the system twice: once to get timing informa-
tion, and the second time to use the timing information and the call pattern to
estimate the redundancy. This took a large amount of computation. The first
run collected the times with as little interference as possible to the program ex-
ecution; this way the results are more accurate than they would be if the more
complex instrumentation were allowed to affect the results.

In the first run, the entry and exit times were recorded for each of the two
procedures simplifya and sdiff. These were concatenated onto a list. This
amounts to an overhead of two cons operations and two calls to ptime per
invocation. The list of times consumed some space; garbage-collection times
were driven up dramatically. Using this information, we looked at the calls
within the system along with their inputs, and figured out which ones were
redundant and how much time they took. The instrumentation overhead added
between 11.97(and 31.41 to the execution time excluding garbage-collection. -

Much of this overhead was charged to the calls, but it cancelled out to some
degree because the time for redundant calls was being deducted from the total
time. .5

In the second run, we took the list of times from the first run and used them
to produce an estimated time. A list of inputs was maintained for each of the two "
functions, along with a flag indicating whether the function was active or not up
the call chain. The time for each top-level redundant call was then eliminated
from the hypothetical best-case time. The time for a redundant call within .
a non-redundant call was deducted from the time for the non-redundant one.

N N5

i..-,
8 "'p..

I'

:€,?€ ' -x .+, ;% ",,' 2 ;?.. .:, .. +--? : -.--... ,. .,. .,- . . -, . ., .,. , . - ,_ . ,

')5

The result was the estimated non-redundant time for each function. Subtracting
this from the total time for the function gives the estimated redundant time, the

time spent reprocessing old inputs. This provided an upper bound on speedups
possible from eliminating recomputations on the same inputs. 'Si

Thirdly, the "hashed time" was derived. This was done by using the hash

tables to save the inputs and outputs, and measuring the amount of time taken
by the modified system. This was the prototype hashed Macsyma.

Presumably, for a given procedure we should demonstrate

(total time without hashing) > (total time using hashing) - (hashtable
overhead) = (essential nonredundant calculation time) I

The nonredundant time assumes an ideal lookup scheme with zero overhead.
The "total time without hashing" includes the entire computation, including
redundant computations. The "Total time using hashing" is what we must
analyze. Either

(total time without hashing) > (total time using hashing)

or

(total time using hashing) >(total time without hashing)

depending upon the level of redundancy and hash table overhead.
Additional notes: The instrumentation is rather crude. The clock used has

a resolution of 1/60 seconds, so some fast calls may not appear to take any time
at all, although this was statistically unlikely over many calls. The monitoring
macros themselves add an overhead to the execution. We tried to minimize this
as much as possible, but the balance of time between the different procedures
may have shifted slightly because of this.

5.2 Benchmarks

The benchmarks used for testing are called FG, Logs, SlouTaylor, and Begin.
Listings of these appear in the appendix. Each consists of a sequence of com-

mands. We counted only the cumulative times for all commands. The Macsyma
display was turned off in some since printing large expressions dominated some

of the computation. In most cases the time for the benchmark is dominated by

one large test. We feel this is reasonable because the larger test case is probably
the most realistic one. The benchmarks are described as follows:

FG Generates polynomials in 3 variables (F & G series of celestial mechanics.

Logs Takes successive derivatives of Iog(log(log(]og(log(x))))).
SlowTaylor Computes a Taylor-series expansion in an inefficient way.
Begin Performs a variety of operations.

9 .

M J

The Begin benchmark (beginning demonstrations) which does no obvious
redundant calculation shows the least benefit from hashing, and is typical of a
number of other benchmarks initially considered.

5.3 The Measurements

Table 1 shows the percentage times spent in each of the critical procedures
for each of the benchmarks. There is considerable overlap in the numbers,
since if sdiff calls simplifya, the time will be charged to both. By timino
each separately, we obtained an upper bound on the speedup if either were
individually sped up so as to take no time at all.

Also in Table 1 is the estimate of nonredundant time as defined in the pre- I,-
vious subsection. This projects how much of the time could be eliminated by a
perfect (i.e. "free") lookup scheme. This is only a projection, however, since the
time overlapped between the two functions can be removed only once. In reality
the hashing overhead will take a big slice of this. For example, the FG bench-
mark spent 90% of its time in simplifya. About 19% of its time (90%-70.97)
was spent recomputing known results.

The measured times are indicated in table 2.

Table I - Percentage of Time Consumed in Critical Procedures %
Time Nonredundant Time .

Case simplifya sdiff simplifya sdiff
FG 90.0 86.1 70.9 65.7
Logs 89.2 100.0 36.6 57.4

SlowTaylor 94.9 100.0 15.6 24.5
Begin 29.3 0.0 26.8 0.0
ignoring garbage-collection time

Table 2 - Timing Comparison: Unhasho.d vs. Hashed

Unhashed Hashed
Case CPU GC CPU GC

FG 15.3 3.0 22.4 5.3
Logs 34.4 9.2 26.0 1.7
SlowTaylor 18.1 4.3 6.9 0.0
Begin 2.6 1.5 3.7 1.5
"cpu" is t-,aal time excluding garbage-collection time.
all time in seconds on a VAX 8600 "

1N

10,,

:- Table Three - Percentages of Possible Speedup
Case Potential l. Actual

FG 28.9 -46.4
Logs -161.3 32.3
SlowTavlor 481.2 162.3

Begin 5.3 -42.3
ignoring garbage-collection time0

Table 3 presents the final results. The "Potential Speedup" is the percent-

age speedup if all redundant time could have been eliminated. The "Actual
Speedup" is the percentage speedup (or slowdown) using the hash tables as we
implemented them.

6 Conclusions and Caveats

The results from table 3 are mildly discouraging. At best, a zero-time hashing
scheme would produce a speedup factor of 5 for the Slou,Taor benchmark,

which was designed for the sole purpose of generating an opportunity to remove
redundant work. The iogs benchmark folowed with a factor of 2.6, and the
other two benchmarks had little potential speedup. The overhead of maintaining
real hash tables reduced these potential performance wins down to a factor of
2.6 for SloTaylor and inconclusive results for everything else.

H m likely is it that one will re-simplify an expression? Figures 1 and 2 show

the behavior of expressions passing through the simplifier for the FG benchmark
(log-log scale). Some 5000 expressions are simplified only once. Some 100
expressions are simplified 3 times. Fewer than 10 expressions are simplified 7

times or more. Nevertheless, if these expressions were tough ones, we might
win.

Figure 2 attempts to correlate the number of times a given expression is sing
plified with the complexity of the expression. The number of resimplifications
of an expression are plotted against the (average) size of the expression. This
was measured by collecting expressions simplified the same number of times and
averaging their sizes this average size decreases n r rm atically with the number
of resimplifications. This suggests that the more likely an expression is to be
in the hash table, the less work it would have taken to resimplify it the "hard
way". Virtually all expressions simplified more than 10 times were atoms.

These facts suggest that the tables will tend to fill with a large number of

small expressions. This will slow down the table management. It is very likely..
that the table management time is often too expensive for the time saved by
tabulating small exp iof The ressodundancy was much lower for the large
expressions, which probably took more computation time. Although the table
overhead would be decreased if only large expressions were considered, fewer

hits would occur. th

way. irualyal eprsson smpifedmoe ha 1 tme wreatms

Thee acs uges tatth tbls il tndtofil it alagenube o

small" " ""- ""- . ". exresins This will. slo dontetal aagmn.Iti e"'lkl

Figure 1 -- # of simplifications vs number of expressions

A

10000

S!

1000

1000

exupressions

S.
I

10

6 4 0

10 40 0:-016S44-

1 10 100 1000
of simplificat ions

'. '.

. . . s0. ,. .

Fiue2# fsmliiainsv vraesz

Fvegure 210#0fsm0fiainsvvraesz

1000

100

average0 1000
sizeipifctin

Figure 3 --# of simplifications vs. average size

100000

10000 •

average
size

100

100
,-

'S

1S

110 100 1000simplifications

a-a.

100000

100000 _______________

The potential speedups from table 3 do suggest that we could try harder.
The time spent in the hash tables was very significant. A faster management
scheme (especially using a faster hash function) may help. No effort was made
to leave "bad" elements out of the table or order the hash bucket contents
for faster search. Some change in the internal structure or representations used
within Macsyma might improve things as well; the upper bounds we have drawn
yield no information about this. It is unfortunate that we have no statistics for

* a non-hashing Maple to compare against.
The Maple system uses an additional hash table to maintain unique copies

of every expression, equivalent to memo-izing the "cons" operation. This is
done primarily to conserve space (at the expense of time). A side benefit is
that every subexpression is uniquely, identified by its address in the table. This
address is used to compute the hash codes in the lookup tables, in less time than
the Macsyma system can. The cost of generating the hash code is effectively
amortized over the construction of new expressions.

WXe thought it would be worthwhile to test the unique-copies idea in Mac-
syma. Figure 3 plots the number of expressions simplifying to a given expression
against its average size. This was measured by collecting expressions that were
the simplified form of nx different expressions, and averaging their sizes. It shows
that the average size tended to decrease quickly with the number of different ex-
pressions simplifying to it, or alternately, that a factor of about 2 in space would
be saved if all expressions equivalent under simplification were represented by
the same object. It would probably be worth the effort if this were sustained,
but this benchmark (FG) would seem to be a likely beneficiary: it wasn't.

The most frequent output of the simplifier was zero. The second most fre-
* quent was a product of an integer and 2 variables. 'We suspect that atoms (or

small expressions) will generally be, by far, the most likely recurring expres-
sions. The Lisp underlying the Macsyma system already works to maintain
unique copies of each atom. We conclude that the following are true:

" Maintaining unique copies of all Maple expressions is probably not much
more expensive than maintaining unique copies of atoms, since atoms are.5
the most frequent expressions.

" Using hash tables and structural equivalence to equate objects in Macsyma
adds a higher overhead, since effort is already spent to make atoms unique
but this property is unused. Building the unique-copy cons mechanism
into Lisp (e.g. H LISP [7]) would perhaps put M acsyma on an even footing.

" Hashing is useful only for exceptionally redundant computations. The
overhead in Maple is not very significant, so little is lost. The overhead
in Lisp systems is higher because the unique-copy computations are being
done twice for the most common case (i.e. atoms).

I12

IiS

II ~ $ ~ *

1%

7 An Application of Parallelism

On a parallel processor, searching the lookup table could commence in paral-
lel with the computation. This would eliminate the extra overhead from the
computation and would provide speedup whenever a successful table search is
faster than recomputing the function. Similarly, putting entries into the table
and rehashing can be performed in parallel with other parts of the computation.
Except for possible memory contention, this is almost assured of breaking even
or winning. This idea should be pursued.

Another possibility to explore is precomputing elements and putting them
into the table before they are requested. The risk here is that the precomputed
result may never get used. One idea would be to automatically expand, factor,
or simplify an expression when it is produced. Another would be to operate
within different contexts, such as evaluating an integral under different assump-
tions. Partial results might be saved which could be requested later, such as
the indefinite integral of an expression when the definite one was requested or
the derivative of an expression when the limit is being taken. Different simpli-
fied forms could be produced, such as producing one where symbolic constants
(such as e) are replaced with numeric approximations, or left in symbolic form.
These jobs are somewhat dubious, and probably fall in the category of making
work for otherwise idle processors. Finally, we would like to emphasize that in
systems with a highly complex global state this technique may be difficult to
apply. Only "pure" side-effect-free functions are good candidates.

8 Acknowledgments

This work was supported in part by the Army Research Office, grant DAAG29-
85-K-0070, through the Center for Pure and Applied Mathematics, University
of California, Berkeley, and the Defense Advanced Research Projects Agency
(DoD) ARPA order #4871, monitored by Space & Naval Warfare Systems
Command under contract N00039-84-C-0089, through the Computer Science
Division, University of California, Berkeley.

References

[1] Abelson, H., Sussman, G.J., Sussman, J. (1985). Structure and Interpre-
tation of Computer Programs, MIT Press/ McGraw-Hill Book Co., New
York, N.Y.

[21 Bentley, J.L. (1982). Writing Efficient Code, Prentice-Hall, Englewood
Cliffs, N.J.

[3] Buchberger, B., Loos, R. (1983). Algebraic Simplification. In B. Buchberger
et al., Computer Algebra (second edition), Springer-Verlag. 11-44

13

I.-.

w PjyX - I -, N Ai, Y IV Nw7NW.. ,'. v i ,;. - , -..W L '_. .

[4] Char. B.W. et al. (June 1984). On the Design and Performance of the
Maple System. Department of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada, CS-84-13.

[5] Fateman, R.J. (June 1979). Macsyma's General Simplifier: Philosophy and
Operation. In Lewis, V.E. (ed), Proceedings of the 1979 Macsyma Users
Conference. Washington D.C. 563-582.

[6] Greif, J. (1985). The SMP Pattern Matcher. In B.F. Caviness (ed), Proc.
Eurocal '85, vol. 2, Lecture Notes in Computer Science 204, Springer-
Verlag, 303-314

[7] Goto, E., Kanada, Y. (1976). Hashing Lemmas on Time Complexities with
Applications to Formula Manipulation. Proc. SYMSAC '76, ACM, New
York, 1976, 154-158.

[8] Michael B. Monagan, private communication 6/16/87

[9] Ponder, C., Fateman, R. (1987). A Short Note on Program Profiling. Sub-
mitted to Software - Practice and Ezperience

14

9 Appendix: The Test Cases

9.1 The FG Benchmark

showt ime al$

/* fAg general representation *

gradef~mu,t ,-3*mu*sigma)S
gradefsigna~t ,eps-2*sigisa**2)S
gradef~eps.t ,-sigma*(mu42*eps))S

f~iJ: i-u1]+Idiffi-1] .t

expop: 1$

g[11

expop:OS

kiliCI .g);

151

b.

b%

9.2 the logs benchmark

uhowtime al$

dif f(1 [5] xz)$
diffC%.z)$
diff(%,x)S -

diii C%,x)$
difiC%,x)$
diffC%,x)$

kill~f);

16I

lo

9.3 the .slowtaylor benchmark

hlowtaylor~expr,var~point~hipower):
block(C resultj,

result at Cexpr .var=point),
for i:1 thru hipower ?

do Cresult:result+Cvar-point)-i* at~diffexpr,var~i)/i!, vax=point)),
result)$

shout ime. allS

slowtaylor~taxi~sin(x))-sin~tan~x)),x,O. 7);

17I

Y* 6 %

9.4 the begin benchmark

showtime: all;
1/(x-3+2);
di fC(/, x) ;
ratsimp(%;
taylor~sqrt~l+x). ,0,5);

(x+3)-20;
ratMCl)
diffC/.x);
factorY.;
factorx-3+x-2*y-2-x*z-2-y-2*z-2);

solve~x-6-1);

mat:matrixCEa,b~cJ .[d.:f,t[g,h,i));

fac(n):=if n=O then I else neiac~n-1);
fac Cs);
g(n):=suM(i*x-i~i,O~n);
g~lO);

41

Emmb.

le--

